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ABSTRACT

This thesis reports the results of a study of a class of

periodically time-varying lossless networks. These networks

are made up of ideal inductors, capacitors, and switches, with

the lossless condition achieved by simple topological constraints.

A complete state-space solution is given for the subclass of net-

works which possess a proper tree for both positions of the

switches and may be completely described by the same state vec-

tor in the two time intervals during which the network is time-

invariant.

Time-varying system functions for switched lossless (SLC)

networks may be defined in a manner analogous to the treatment of

time-invariant lossless (LC) networks. Properties of such system

functions, especially those derived from the lossless condition,

lead to further analogies to, and extensions of, the frequency

domain properties of LC networks.

Various frequency-power formulas derived herein and an

efficiency relation deduced from them may be compared to those

of nonlinear reactive and resistive elements. The comparison

shows, in particular, that Page's inverse-square law of harmonic

generation may be bypassed. The difference between the ideal

switch and other switching devices such as the ideal diode and

silicon controlled rectifiers thus may be clarified, and a possi-

ble circuit is given for simulating the ideal switch at large

signal or power levels.
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Finally, the problem of realizing the network functions of

linear time-varying networks using only ideal switches as time-

varying elements is considered briefly. For the fundamental case

of the driving point admittance function of a lossless, periodi-

cally time-varying one-port network, a suitable network structure

is selected and analyzed. This analysis shows that the poles of a

given admittance function can be realized exactly, but the residue

function, while appropriately periodic in time with the period of

the network variation, cannot be arbitrarily specified. However,

an exhaustive treatment of the design flexibility possible for the

given scheme is not carried out due to the lack of comprehensive

realizability conditions and tolerances for linear time-varying

networks.
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PERIODICALLY SWITCHED LOSSLESS NETWORKS

CHAPTER I : INTRODUCTION

i.____iBack@round of Problem

The study of Linear Time-Varying Networks and Systems as a

branch of electrical engineering science may be regarded as a

consequence of perturbation analyses of nonlinear systems. In

parametrically excited linear systems or linearized versions of

nonlinear systems in which a small signal is imposed on a large

waveform, the equations describing input-output relations become

linear ordinary differential equations with time-varying coeffi-

cients of the form

N M

Z an(t) dny = _. bm(t) dm---_u
dt n dtm

n=0 m=0

(I)

where u(t) is the input waveform, y(t) is the response function

and t represents the independent time variable. In particular,

parametrically-excited circuits and systems have been extensively

analyzed from this point of view, using the available mathematical

theory for equations of type (i) to obtain information on stability

bounds and the amplitudes and frequencies of sustained oscillations.

The analyses employed at that stage still could properly be regarded

as lying in the realm of applied mathematics.

About two decades ago, using as background and motivation the

rapid development of linear time-invariant network theory, Darlington,
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Zadeh and others began to generalize concepts of this theory to

the time-varying case. Thus integral transforms were defined,

leading to time-varying versions of impedance and admittance

functions, as well as various pole and residue concepts.

The general analyses [1'2] of linear time-varying networks

postulate as circuit elements time-varying but usually positive

definite resistances R(t), capacitances C(t) and inductances

L(t), and sometimes transformers of turns-ratio T(t).[5] However,

synthesis schemes [3] which lead from a given network description

to a set of elements (R(t)_ C(t), L(t), T(t)} , their functional

values, and a network configuration are not as readily available

as in the time-invariant case, where the analysis and synthesis

processes are comparatively straightforward algebraic processes.

The available synthesis and modelling schemes usually employ con-

stant RLCT elements and only one class of time-varying elements.

For example, Spaulding and others$ 5'6] postulate a time-varying,

passive, lossless transformer for their synthesis schemes. In

another approach [4], multipliers and a set of specially generated

signals are postulated for use in a generalized n-path structure;

the multipliers and generated signals function as time-varying

amplifiers (which may be regarded as time-varying resistances if

the inputs are currents and the outputs are voltages, and vice

versa).

Another element which can be used as a time-varying element

is the ideal switch. An ideal switch is postulated to have the

following characteristics :
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(1) It has zero resistance in the "closed" state and can con-

duct current in either direction.

(2) It has infinite resistance in the "open" state and can

sustain voltages of either polarity across its terminals without

conduction.

(5) It can be opened or closed instantaneously by applying an

appropriate trigger waveform to a control terminal at instants

independent of the orientation or magnitude of the voltages and

currents at the other terminals.

While such an ideal switching device is not generally avail-

able as a single unit, it may be realized approximately from

available components at various frequency ranges and power levels.

A practically significant class of such components introduced in

the last decade consists of silicon controlled rectifier (SCR)

devices. These rugged devices have been applied widely in effi-

cient and compact power processing circuits demanded for space-

vehicle and satellite applications. [7'8'9] We thus have both

theoretical and practical motivations for the study of the class

of networks undertaken herein.
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1.2 Statement of Problem

ThE central problem considered here is the mathematical

characterization of networks of ideal capacitors, inductors and

switches in which the inductances and capacitances are linear,

positive and time-invariant_ and the switches are opened and

closed periodically, thus providing a linear, passive periodi-

cally time-varying system. By imposing simple topological con-

straints, we avoid the possibility of instantaneous charge or

flux transfer, so that the switches operate without loss of

energy. The networks concerned then may be referred to as

switched lossless (SLC) networks, a generalization of the classi-

cal time-invariant lossless (LC) networks treated by Foster, Cauer,

Darlington and others. The class of SLC networks includes many

circuits that have been used in frequency conversion and power

processing systems, but no general analysis of their behavior

has been available. Moreover, general analyses of switched net-

works have not dealt specifically with this important subclass of

networks, since they usually rely on assumptions of asymptotic

stability. It is the purpose of the research presented here to

provide a general analysis of the class of SLC networks, exploit-

ing the analogy between SLC and LC networks, and relating the

results obtained, in particular, to frequency conversion networks.
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1.3 Historical Review

Since periodically switched networks form a subclass of the

general class of linear networks with time-variable elements_ most

of the results of the general theory of networks of the latter type

are directly applicable to switched networks. For example, Floquet's

theorem is valid and time-variable system functions of the type intro-

duced by Zadah may be defined. Modern analysis of periodically time-

varying networks and systems usually start with the state-space equa-

tions in the normal form

x(t) = A(t)×(t) + B(t)u(t) (2)

where the n-square matrix A(t) and the n-column vector B(t) are peri-

odic in time t and continuously differentiable to any order desired.

For switched networks_ A(t) and B(t) are piecewise constant between

switching intervals and discontinuous at the switching instants. Be-

cause of the discontinuity of the coefficients_ extensive manipulations

of the state equation (2) which usually involve differentiation of the

coefficients are difficult or not possible. However_ the piecewise

constant nature of the coefficients permits some simplifications in

actually obtaining a solution of the equation and most of the effort

is then directed to exploiting the solution.

The first general analysis of switched networks was published

F7n7
by Bennett L_J in 1955; he used classical transform techniques to

calculate the time-domain response in successive time intervals

corresponding to alternate states of a switch. The two solutions

at each instant of change of state were matched by setting the

final values of inductor currents and capacitor voltages in one

interval equal to the initial values of those quantities in the
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succeeding interval. In 1958_ following the introduction of

Bashkow's A-matrix into network theory, Desoer [II] presented an

analysis similar to Bennett's in principle, but utilizing the

state-space fomulation and matrix operations. The solutions of

both the transient and steady-state problems were expressed in a

compact form suitable for automatic computation. It may be noted

that both Bennett and Desoer used the assumption of continuity of

the state-vector (made up of certain inductor currents and capaci-

tor voltages), which is mathematically convenient in obtaining

closed form solutions valid for all positive time, but did not

stress its physical significance as the condition for lossless

operation. Their work was motivated by small-signal processing

circuits in time-domain multiplex systems where signals may be

amplified after processing; whereas for power-processing appli-

cations, lossless operation becomes a matter of prime importance.

Significant but specialized analytical work suitable for

particular applications was done by Fettweis[12] on frequency

converters, by Fischl and others [15-17] on commutated networks,

and by several authors [18-21] on synchronous networks used for

compensation of suppressed-carrier control systems. In cases

where specific networks were considered, they were all networks

of switches, resistors and capacitors because the main objective

of many of these efforts was to obtain band-pass characteristics

without the use of inductors (either because inductance cannot

be realized directly in integrated circuits or because the required

size or quality of inductors is prohibitive).
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In addition_ two approximate analyses of the resonant trans-

fer filter used in time-multiplex communication systems were per-

formed by Desoer [22] and Ozone [23]. The efforts of several authors

to improve the conversion efficiency of ring modulators had also

involved some work on simple networks with switches and filters. [24-27]

More recently_ Sun [28] and Sun and Frisch [29] have generalized

Desoer's approach to include nonsynchronous operation of the switches

and to give a unified treatment of commutated and synchronous networks

using the state-variable formulation_ while Liou and Mastromonaco [30]

have treated the case of discontinuous state-vectors by defining coup-

ling matrices at the switching instants_ and presented an exact anal-

ysis of the resonant transfer filter.

The state-space formulation presented in Chapter 2_ which serves

as the starting point in the mathematical characterization of SLC

networks_ parallels the technique developed by Bennett [I0] Desoer [II]

[28]
and Sun. However_ the results presented in this report go fur-

ther in examining significant aspects of the solution and relating

the characterization thus derived to the physical properties and

applications of the networks.



1.4 Outline of Thesis

The organization of the rest of the thesis is as follows:

In Chapter 2, we present the state-space formulation and

solution of the equations of SLC networks. Section 2.1 discusses

the topological constraints to be satisfied for lossless operation

of the switches and gives possible canonical structures for 2-port

SLC networks. Section 2.2 presents the state-space analysis for

the restricted case where the SLC networks are of the canonical

types, while Section 2.5 considers the general SLC networks. In

Section 2.4, a summary of formulas is given to facilitate compu-

tational procedure and a simple SLC network is analyzed to illus-

trate some aspects of the procedure.

In Chapter 3, relevant aspects of the state-space solution

are examined further, leading to the definition of time-varying

system functions for SLC networks. Properties of the system

functions similar to those of lumped linear time-varying networks

are discussed and properties of the system functions for 1-port

and 2-port networks are developed as consequences of the lossless

condition.

Chapter 4 deals with frequency-power formulas and some prac-

tical aspects of SLC networks. The real-power formulas are

contrasted with those of nonlinear reactive and resistive ele-

ments, and the possibility of bypassing Page's inverse-square law

in harmonic generation efficiency using SLC networks is demon-

strated. In this context, the position of the ideal switch among

,



"switching" elements is discussed and a possible circuit for

simulating the ideal switch at reasonable power levels and

frequency ranges is given.

Chapter 5 discusses the possibility of designing and model-

ling linear time-varying systems and networks using only ideal

switches as time-varying elements. Although the general commu-

tared n-path network may be used to simulate the state-equations,

a more tractable scheme for input-output system function design

is shown to be a parallel or cascade set of basic 2-path networks

analogous to the Cauer partial fraction synthesis of LC networks.

Chapter 6 gives a summary of results and suggestions for

further research.

9,
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CHAPTER 2: STATE-SPACE ANALYSIS OF SLC NETWORKS

The objective of this chapter is to present the basic state-

space formulation which is the starting point in the mathematical

characterization of SLC networks developed later. In Section 2.1,

we discuss the types of constraints necessary for the lossless

operation of the switches in an SLC network. Also, other desira-

ble features of an SLC network are noted and networks possessing

these additional features are referred to as "canonical." Then

in Section 2.2, the solution of the normal form state equations

of SLC networks of the canonical types is presented, while Sec-

tion 2.5 discusses the extension of the analysis to general SLC

networks not constrained as in the previous section. A collection

of the response equations of the canonical networks and an illus-

trative example are given in Section 2.4.

2.__1 Topological Constraints and Canonical SLC Networks

To obtain the condition of losslessness in networks of ideal

inductors, capacitors, and switches, we must arrange to avoid

instantaneous charge transfer among capacitors or instantaneous

flux transfer among inductors when switches are closed or opened.

The potentially lossy situations are those obtaining when:

(i) by closing a switch we form an all-capacitive loopset and

(2) by opening a switch, we form an all-inductive cutset.

The simple cases of one or two reactive elements and a switch are

shown in Fig. 2-1o For the case shown as (a) in the figure, if
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the capacitor voltage is V just before the switch is closed,

the energy lost is E 1 = 1/2 CV 2, while for the case (b), if

the voltages across capacitors CI, C 2 are VI, V 2 just before

closure of the switch, the energy lost is

E2 _ i CI C2 (VI_V2)2
2 CI+C 2

In both cases the energy lost would be zero if a sensing

mechanism were employed to close the switch only at instants

when V = 0 in case (a) and only when V 1 = V 2 in case (b).

However, apart from the additional complication introduced by

such sensing devices, the switches could not be operated periodi-

cally in this mode, since, in general, the voltages in the network

are not periodic. Hence, the more convenient manner of avoiding

loss at switching instants is to disallow the potentially lossy

configurations.

Cases (c) and (d) of the figure are the duals of the first

two cases.

Although there is an uncountable number of SLC networks con-

strained as above, yet for the benefit of the analysis in the next

section, we shall define possible canonical SLC networks by picking

certain canonical LC networks and inserting switches at appropriate

points in the configuration such that the switches could be operated
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periodically without loss. To simplify the state-space formulation,

we choose LC networks with proper trees so that every capacitor

is in a tree and every inductor in the co-tree. Then the state

vector consisting of the set of inductor currents and capacitor

voltages completely describes the network variables at all times.

SLC networks satisfying the canonical conditions are shown

in Figs. 2-2 and 2-3. These canonical forms are useful for

theoretical illustrations and, in some cases, are extensions of

simple cases which have been in practical use. However, in prac-

tice, a single switch is usually sufficient for obtaining the

desired switched characteristics.

If an ideal current source is the type of excitation desired,

we may use the duals of the circuits shown.
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2.2 State-Space Formulation

Consider an SLC network driven by a source ept. Assume that

there are two time intervals Ilk and I2k in which the state-

matrices are constant, i.e., either there is only a single switch

or the several switches of the network are operated synchronously.

Suppose also, as discussed in the preceding section, that the same

state variables completely describe the network in each time inter-

val. Then we can write the normal form equations of the network in

the following manner:

: AlX + BlePt , t 6 Ilk:kT<t<kT+Tl (la)

x = A2x + B2ePt ' t 6 I2k:kT+Tl<t<(k+l)T
(ib)

where:

A 1 and A 2 are constant real square matrices of order

B 1 and B 2 are constant nxl column vectors

k is an integer

T is the switching period

TI/T is the duty cycle of the switch.

Ilk and I2k represent time intervals and

× represents the state vector.

Making a change of variables for convenience,

n , say

Z(t) = x(t)e -pt (2a)
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we obtain equations for Z(t) as

Z = EIZ + B1 , t E Ilk (2b)

Z = E2Z + B 2 , t E I2k (2c)

where

E1 = Al-PI
(3a)

E 2 = A2-PI (3b)

and I is the unit square matrix of order

Let

Zlk(t ) = Z(t) , t E Ilk

n •

Z2k(t ) = Z(t) , t E I2k

as illustrated in Fig. 2-4•

for

Then we obtain the following solutions

Z(t) from (2b) and (2c).

Z(kT) + [eEl(t-kT)-I] EIIBI

Z (kT+TI)+ leE2 (t-kT-Tl) -I] E21B 2

El(t-kT)

Zlk(t) = e

E2(t-kT-T I)

Z2k(t) = e

(4a)

(4b)

Because of the constraint of lossless switching and the assump-

tion that the state vector consists of capacitor voltages and

inductor currents, the values of x(t), and hence Z(t), are con-

tinuous at the switching instants; thus
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From (4a)

ZI,k+I(kT+T) = Z2,k(kT+T) = Z(kT+T)

ZIk(kT+T I) = Z2k(kT+TI) = Z(kT+TI)

(5a)

(5b)

and from (4b)

EIT 1
Z(kT+T I) = e Z(kT) + [eEITI-I] EIIBI (6a)

Eliminating

','. [ ]Z(kT+T) = e Z(kT+TI) + eE2T2_I E21B2

Z(kT+T I) from (6a) and (6b), yields

(6b)

where matrix

Z(kT+T) = QZ(kT) + G

q and vector G are defined as follows.

EIT 1 E2T 2 E2(T-T I)

ql = e ' Q2 = e = e

Let

(7)

(8a)

(Sb)

Then

G2 = (q2-I) EflBI

q : e2e1

(8c)

(8d)

G = Q2GI + G 2

The difference equation (7). has the solution

Z(kT) = _Z 0 + (I-qk)(I-Q) -I G

Z(kT+T l) = ql Z(kT) + G1

(Be)

(9a)

so that (9b)
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From (2a), (4) and (9), we may now write expressions for

the state vector x(t) as

x(t) =

eEl(t-kT) [Z(kT)+EIIBI ] ept _EIIBIePt t 6 Ilk

eE2(t-kT-TI)[z(kT+TI)+E21B2] ept _E21B2ePt , t 6 IZ<

(10a)

(10b)

Equation (10) provides a complete solution for the state-

variable response of the network in terms of the initial conditions

and the coefficient matrices in normal form description (i).



25.

2.3 Extension to General SLC Networks

The analysis presented above represents the simplest and most

restricted form of the state-space formulation of switched networks.

Several extensions are possible and have been treated in the litera-

ture. Sun [1] has treated the case in which the switches are not

necessarily operated in synchronism, but where all switches are

operated with the same period T, so that the basic time interval

kT<t<kT+T is, in general, divided into n subintervals Iik during

which the state-matrices are constant. Liou and Mastromonaco [2]

have recently dealt with the ease where the state-vectors may be

different in the different subintervals and discontinuous at the

switching instants. In their work, coupling matrices are used to

relate adjacent state vectors at the switching instants to enable

a continuation of the solution over all positive time.

For SLC networks, the most general case of interest is that

where the state vectors consist of ambit charges and loop fluxes

and not necessarily of individual capacitor voltages and inductor

currents as previously assumed. [5'4] In this case, the state vec-

tors may differ in different time intervals and so may be discon-

tinuous at the switching intervals. However, as long as the network

is lossless, there is a physical set of variables, consisting of

individual capacitor voltages and inductor currents, which is

invariant from one interval to the other and is continuous at the

switching instants. The relation between the mathematically chosen

state vectors {Xl,X2} and this physical vector [y} may be written as
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where :

xI = Sly (lla)

x 2 = S2Y (llb)

y is a vector of order n

Xl, x2, are vectors of order m, m S n

The matrices S1 and S2 express the fact that in the general case,

the state vectors are linear combinations of the capacitor voltages

and inductor currents, in contrast to the case of the canonical SLC

networks in which the state vector is simply the set of all capaci-

tor voltages and inductor currents. However_ since for lossless

operation of the switches_ the same all-capacitive loopsets and all

inductive outsets must be present in both time intervals, a unique

relation exists between the vectors

where

xI and x2:

xI = Cx 2 (llc)

C is a constant nonsingular matrix of order m x m.

The normal form equations of the general SLC network may then

be written as:

• BlePtxI = AIX 1 + (12a)

• B2ePtx2 = A2x 2 + (12b)

with the change of dependent variables

Z = x.e -pt -pt• , W = ye , i = 1,2
l 1
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we have

Z1 = EIZI(t) + B1 , Zl(t) = SIW(t) , t 6 Ilk (13a)

Z2 = E2Z2(t) + B2 , Z2(t) : S2W(t) , t 6 I2k (15b)

The solution of (13) is

El(t-kT) leEl(t-kT) ] IBIZl(t) = e Zl(kT) + -I Ei , t 6 Ilk (14)

E2 (t-kT-Tl) [ I] IB2Z2(t) = e Z2(kT+T I) + eE2(t-kT-Tl)- E2 , t 6 I2k (15)
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The boundary conditions at the switching instants are

SIW(kT+TI) = ZI(kT+TI) = CZ2(kT+TI) (16a)

S2W(kT+T) = Z2(kT+T ) = C -I ZI(kT+T) (16b)

From (14) and (15) we have

ZI(kT+TI) = QIZI(kT) + G1 (17a)

Z2(kT+T ) = Q2Z2(kT+TI ) + G 2 (17b)

Hence from (16) and (17) we obtain

ZI(kT+T) = QZI(kT) + G (18)

where the new quantities Q and

Q - CQ2 c-iql

G are defined as

(19)

G = CQ2 C-IGI + CG 2 (2O)

The solution of equation (18) is again

Zl(kT) : qk Zo + (I-q k)(I-Q)-IG (21)

The sequence of equations (21), (17), (16), (15) and (14) constitute

the complete solution of the system (12).
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2.4 Summary of Response Equations for Canonical Case

We summarize below the scattered expressions and definitions

leading to equation (i0) for easy reference. Then we shall make a

few calculations on a relatively simple circuit to illustrate the

use of the summary of formulas.

For the system (i) :

E1 = Al-Pl , E 2 = A2-Pl

EIT 1 -PT 1 AIT 1

Ql=e =e e

E2T 2 -P(T-T I) A2(T-T I)

Q2= e = e e

-pT A2(T-TI) AITI
Q = Q2QI = e e e

G1 - (QI-I)E[1B1 - (I-Ql)(pI-A1)-lB1

(3)

(8)

G 2 = (Q2-I) E_IB 2 = (I-Q2)(pI-A2)-IB 2

G = Q2GI + G2 J

Z(kT) : Qk Z + (I-Qk)(I-Q)-IG
O

Z(kT+Ti) = OiZ(kT) + G1

(9)

I El(t-kT) (kT)+EIIBI ept -EIIBIe pt , t 6 Ilk

e [Z ]

x(t) =

E2(t-kT-Ti) [Z ]e (kT+TI) + E21B 2 ePt-E21B2 ept , t E I2k

(I0)
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Example: To illustrate the use of the summary of response

equations in a systematic computation of the response of an SLC

network to an exponential input ept, let us consider the genera-

lized series-capacitor inverter circuit shown in Fig. 2-5. For

the special case in which the input is a d-c voltage source (p=0)

and the common switching frequency of the complementary switches

S and S' is equal to the center frequency of the series RLC circuit,

(Ws=8) , this circuit is used as a d-c to a-c inverter with the

voltage across the resistor as the output. [5]

Assume that in the time interval Ilk , S

open and in I2k , S is open and S' closed.

vector is

is closed and S'

Then the state

iv]
and the coefficients of the normal form state equations are

A1 = A2 = I 0 I/C 1
-I/L -R/LJ

R 82 1 R 2.
Let _ = _-L ' = LC 4L_

Then

where

: -I/L

_ 82D(p) (p+_) 2 + .

L o j
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FIG. 2.5 SERIES-CAPACITOR INVERTER
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Then the Q-matrices and G-vectors may be calculated from (8) as:

-(P+_)T i

Qi = e

os _ T i - _ Sin _ T i

[- _L Sin _ T.1

i ]_-_ Sin 8 T i

Cos _ T + _
i _ Sin _ T i

Gi : (I-qi)(pI-Al)-iB I

gl2(P)

where

gll (p) = LC.D(p) I1 - e-(P+_)Tl{cos _ T1 + _ Sin 8 TI} ]

gl2(P) : L-D(p) [_ -<_)_ +c_ _)_n__}_2_-e <(p+2_) Cos 8T 1 \

J

[J0

G 2 :

0

since

G = Q2GI =
I gl(p) ]

g2(P)

whe re

-(P+_)T 2

gl(p) = gll(P)e IC - -_ Sin _T21os 8 T2 8

gl2(P) -(
+ 8C e P+_)T2sin 8 T 2

i -(P+_)T2

g2 (p) = 85 gll (p)e Sin 8T2 + gl2(P)e-(P+_)T21cos _ T2+_Sin 8 T2].
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The vectors z(kT) and z(kT+Tl) may next be calculated from (9)

and the complete state response obtained from (I0). However, the

algebraic expressions become increasingly unwieldy, so that we shall

not continue the computation any further for a general input ept.

For the special case of inverter operation, the input is d-c

so that

we obtain

p = 0, and letting
1

T1 : T 2 : [ T and 8T = 2_(2n+I),

Q1 = Q2 = -e

Q =e I

GI= (i+e-°_/2) 2o£

G --e- J2I'1
In the steady state, as discussed later in Chapter 5,

Z(kT) : (I-Q)-IG :
-dr

1 -e

Z(kT+T/2) : QIZ(kT) + G1

1 + e -_/2 I 1 ]i- e -°ff
2aC

Taking the inductor current as the output, we have the solution
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i(t) =

2_C + Y01 e -_clk 12aC Cos 8tlk + (_ 2C 8L Sin 8t I

-_t2k [ (_CY02 e 2aC Cos 8 t2k +

where tlk = t-kT , t2k = t-kT-T 1

Y01 =

_e- dr/2 (l+e-O/f/2 )

It may be noted that for the practical inverter circuit in which

_:_S'

the switches need to conduct current in only one direction, so that

generally available unidirectional switching devices such as silicon

controlled rectifiers can be used in realizing the circuit. In

general, with properly specified relations between the signal and

switching frequencies, and the natural frequencies of the network,

the state-space analysis presented in this chapter is valid for

circuits using only such unidirectional switching devices in place

of the ideal switch. Hence the response equations obtained here may

be applied to the analysis of all commonly used power processing

circuits. One of the consequences of postulating the ideal switch,

however, is the theoretical interest generated by the independence

of the frequencies associated with the driving source and the switches,

and the natural frequencies of the network.
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CHAPTER5: SYSTEM FUNCTIONS: DEFINITION AND PROPERTIES

Our main objective in this chapter is the development of a

mathematical characterization of SLC networks using time-varying

system functions. This development is carried out in Section 5.1.

Then in Section 3.2, several relations are derived for the time-

varying system functions of one-port and two-port SLC networks

based on the lossless condition. This derivation is carried out

mostly without specific limitation to SLC networks_ so that the

results are expected to be valid for other classes of periodically

time-varying lossless networks.

Several simple SLC networks are used to illustrate the special-

ized form of the 2-port relations.
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3.1 System Functions

In this section, we further examine the solution represented

in equations (9) and (i0) of Chapter 2 in order to define, for SLC

networks, time-varying system functions of the type introduced by

Zadeh. Thereby, we may observe certain properties of these system

functions that are identical with those of networks with continu-

ously time-varying elements.

To begin, we may note the fact that in several respects the

matrix Q of (2.8c) or (2.19) plays an essential role in the

theory of switched networks similar to that of the A-matrix for

time-invariant networks. Q is the transition matrix for the dis-

crete system associated with the system (i); i e., if

Q

x : AIX , t 6 Ilk

O

x : A2X , t E 12k

(i)

then x(kT) = Qk x0 , Q = eA2T2 eAITI (2)

and

x(t) =

Al(t-_) Al(t-kT)

e x(kT) = e Qkx0, t E Ilk

(5)

'_ _ • _ A_(t-kT-TI) A_T] k_2<_-"_-_i ,
e ×(kT+TI) = e e - - Q x0, t E i2k

The eigenvalues of Q thus determine the transient behavior of the

switched network. For SLC networks, which from physical observation

are not asymptotically stable, the eigenvalues of Q must all possess

unit magnitude such that QI is an oscillatory matrix function of

the discrete variable k. For example, in the simple circuit shown
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in Fig. 5-1(a), with , and

[ J0 -i/c

A1 = A 2 = =

1/L 0

A ,

we find that

AT
q=e

=[Cos w T

Sin w T

7

-I/_C Sin w TI

JCos w T

2
where w : I/LC

The eigenvalues of Q in (5) are

(4)

(5)

11, 2 = Cos w T ± j Sin w T

so that I X.ll = 1 as expected.

For the 2nth-order case, Fig. 3-1(b), where A1 = A2,

direct sum of 2 x 2 submatrices D. of the form
1

(6)

Q is the

m °
l

I m

1
Cos _.T - _ Sin w. T

1 W._-. 1
1 I

1
Sin wi T Cos wi T

3. 1

(7)

2 1
where w. -

l L.C.
J. J.

Thus, in this case, even when some eigenvalues of Q coincide, while

each has unit magnitude, Q does not have any unbounded growing modes.

We note that two eigenvalues of Q are equal whenever

m. = w. ± 2nk (8)
I 'J T
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for some (i,j). For the case Al_A2, but with the same ordering

of state-variables, the eigenvalues of Q are of the form

= Cos _ ± j Sin = (9)
gi gi gi

whe re
_gi WliST + w2i(1-6)T

6 : TI/T : duty cycle

.th
w. = I natural frequency of network in time
3 i

.th

interval Ijk = i eigenvalue of matrix Aj.

As the behavior of Qk for SLC networks is closely related to

that of eAT for LC networks, so a steady-state response for SLC

networks may be defined in a manner analogous to that of LC net-

works. For LC networks described by the equation

0

x = Ax + Be pt (i0)

the complete solution is

x(t) : eAtx 0 - eAt(pI-A)-iB + (pI-A)-IB e pt. (ii)

Here eAt is oscillatory and the limit of eAt as t-=does not exist.

Then we may not define a steady-state solution simply by a time

translation approaching infinity. But a "steady-state"

solution may be defined by choosing the particular set of initial

conditions

x 0 = (pI-A)-IB (12)

so that the oscillatory transient represented by the first two

terms in (ii) is not launched. Then

x (t) = (pI-A)-IB e pt
s
s

(13)
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For SLC networks, we may similarly choose the particular set of

initial conditions

Z0 = (I-Q)-IG (14)

for equation (9) and thus obtain

Zs (kT) : Z1 = (I-Q)-IG

Z s (kT+T I) = Z 2 = QI(I-Q)-IG + G1
s

(15a)

(15b)

Then the steady-state solution may be written as

×(t) : N(p,t) ept

where

N(p,t) :

El(t-kT) [Z IBI ]e 1 + E1 , t E I2k

eE2(t-kT-TI) [Z2 + E21B2]-E21B2 _ t E I2k

(16)

(17)

The resulting N(p,t) is a vector-valued, time-varying system

function of the type defined by Zadeh. [I] The poles of N(p,t),

arising from the term (I-Q)-IG in Z1 and Z2, are time-invariant,

in agreement with the result proved by Darlington [2] for networks all

of whose elements vary periodically with the same period. The poles

contributed by the factor G are the natural frequencies of the network

in both time intervals, as observed in the inverse operations implicit

in the expression

G : Q2(I-QI)(pI-AI)-IB 1 + (I-Q2)(pI-A2)-IB 2 (8)

By a procedure similar to that employed earlier in the discussion

of the eigenvalues of Q , the poles resulting from the factor
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-i
(I-Q) can be shown to be of the form

pk i = j(m i +km s) , i : 1,2, ... M

k : O, + i, + 2,..

(19)

2_
where w = --

s T is the switching frequency.

For the special case when A 1 and A 2 have the same eigenvalues,

the quantities wi in (19) are the natural frequencies of the

network. In general,

wi . 6 + . (1-6) (20)
= _ll wl 2

where the frequencies are defined in a manner similar to the

definition of the eigenvalues in equation (9).

Since the poles of the system function N(p,t) all lie on

the imaginary axis, SLC networks have an infinite number of real

resonant frequencies, any one of which could produce driven

instability For example, the "ringing choke" circuit shown

in Fig. 3-2 is known to have an unbounded mode when the input

voltage is d.c. and the switching frequency, u s , equals the natural

frequency in I2k , w 2 = I/L-_. In this case, the driving frequency

zero is just one of the infinite resonant frequencies

Wk = _s(l+k) , k = O, ± i,...

for which the circuit possesses an unbounded mode du_ to resonance.
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FIG. 3.2 "RINGING-CHOKE" CIRCUIT
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Considering next the time domain aspects of N(p,t), we observe

directly that N(p,t) is periodic in t with period T, the common

switching period, also in agreement with the known results for

periodically varying networks. Fourier expansion of N(p,t) then

defines the bandlimited system functions _(p), which have the

following property: If the system with response function N(p,t)

is followed in cascade by an ideal bandpass filter of bandwidth ws

centered at frequency kw s as in Fig. 3-3, the response function of
jkw t

the total system is then Nk(P)e s .

From equation (17) we obtain by direct integration,

JkWst = 2_
N(p,t) = _, Nk(P)e , ws -_- , (21)

where

= 1 {[(p + Jkms)i_Al]-l[i_e[Al-(p+jkws)I]Tl] [ZI+EIIBI]Nk(P) g J

+ e -i [A2- (p+jkws)I IT2]-jkwsT1 [(p + JkWs)I-A2] [I-e [Z2+E21B2] (22)

FIe -3kwsTl_+ - I }

The most commonly encountered of the bandlimited system

functions is N0(P) , for which the bandlimiting filter is an

ideal lowpass filter. Setting k-_3 in equation (22) gives
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1 {(pi_A1)-1(i_Q1)(ZI+EI-IBI)NO(p) = _-

+ (pI-A 2) -I(I-Q 2) (Z2+E2-1B2) (23)

+ TI[(pI-AI)-IBI -(pI-A2)-IB2] _

As an example, consider the switched capacitor circuit shown

in Fig. 3-4(a).

Here A I = A 2 = B 2 = 0 , B1 = 1

Then
-pT 1 -pT 2 -pT

Q1 = e , Q2 = e , Q = e

-PTI
l-e

GI = _ , G2 = 0

G
e-PT2_e-PT

P

Z1 =

-PT 2 e-PTe

p(l_e -pT)

-PT 1
l-e

Z2 =
D (l-e -pT)
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S'

C=lf

(a) SINGLE SWITCHED CAPACITOR

(b) COMMUTATED N-CAPACITOR NETWORK

FIG. 3.4 SWITCHED-CAPACITOR NETWORKS
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Hence

Nk(P ) : 1

P( p+jkw s) (l-e -pT )

1 _l-e-Jk_sTl)l

+ --p N

In particular, N0(P) is simply given by

T1 \ 1/

N0(P) = ._-_- ] _ , the only effect of the switching being to multiply
T [3]

the capacitance by the ratio q .

For the n-capacitor uniformly commutated network shown in

Fig. 3-4(b), however, the transfer function possesses an additional

multiplicative factor

n

-k(pT/n) _ l-e -pT
l_e-PT/n

k=0

due to the unifom delays in observing the response of individual

capacitors at the overall circuit output. The singularities of this

extra factor produce both comb-like and band-pass characteristics

so that the circuit has been utilized in various configurations for

radar signal processing applications and inductorless bandpass fil-

ter realization. [4'5]
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3.2: Further Properties of System Functions: Consequences of

Lossless Condition
.. , , , ,,,

In this section, we shall explore further properties of system

functions of 1-port and 2-port SLC networks which are consequences

of the lossless condition. These properties are .found to be

generalizations of familiar cases for LC networks.

First, consider the dual 1-port SLC networks shown in Fig. 3-5.

For Fig. 3-5(a), if the input is

• •

i(t) = Re!e3Wt_ = Cos w t
. j

then the voltage across the terminals of the network at port 1 is

v(t) = Re_fLZ(jw,t)eJwt } (24)

by the principle of superposition for linear systems. Let Z(jw,t)

be separated into real and imaginary parts as

Z(jw,t) = R(w,t) + jX(w,t) . (25)

Then v(t) = R(w,t) Cos wt - X(w,t) Sin wt

and the instantaneous power absorbed by the network at port 1 is

p(t) : v(t)i(t) : R(w,t) Cos2wt - X(w,t) Sin mt Cos wt

= {{R(w,t)[l + Cos 2 wt]-X(w,t) Sin 2 wt} .

Since the network is lossless, the time average of the power

absorbed is zero, i.e.,

<p(t)> = {{<R(w,t)> + <R(w,t)Cos 2 wt) - <X(w,t) Sin 2 wt>}=0. (26)

Since Z(jw,t) is periodic in time with period T = 2_/Ws, so also

are R(w,t) and X(w,t). Thus, for ws _ 2w,
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÷

V=Z(p,t)e pt

1
SLC

NETWORK

(a)

z=Y(p,t)e pt
Ii=

SLC

NETWORK

(b)

FIG. 3.5 SLC 1-PORT NETWORKS
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For w
s

where we may write

Then

Hence

so that

Hence

<R(w,t) Cos 2 wt> = <X(w,t) Sin 2 wt> = 0 .

= 2w, let

GO

JkWst

Z(jw,t) = Z Zk(JW)e

k__ --CO

Zk(jw) = Rk(W) + JXk(W)

O0

R(w,t) = Z IRk(W) Cos k Wst - Xk(w) Sin k Wst]

1
<R(w,t) Cos 2 rot> = 2 R2(w)

1 R2(w )<X(w,t) Cos 2 wt> = _

<R(w,t) Cos 2 rot> - (X(w,t) Sin 2 wt> = 0 .

<p(t)> = <R(w,t)> = 0

or from the periodicity and definition of R(w,t) we obtain

TRe_Z( w,t)_
- j t=0

for all w, w
s

: 2_/T. This is then the generalization, for the

(27)

(28)

(29a)

time-varying case, of the relation

Re{ZLc(JW)} : 0

for time-invariant reactance functions.
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By a similar procedure starting with Fig. 3-5(b), we also have

(Re{Y(jw, t)]) = 0 (29b)

We next consider the SLC 2-port network terminated at port 2

by a passive time-invariant impedance, Fig. 3-6.

Let the driving voltage be

v(t) : Re{e j_t} : Cos mt .

Then

il(t) : Re{Yll(JW_t)eJwt }

and

= Gll(W,t ) Cos wt - Bll(W,t) Sin wt

i2(t) : Re{Y21(Jw,t)eJ_t }

= G21(w,t) Cos wt - B21(w,t) Sin wt

(30)

whe re

Y..(jw,t) = G_(m,t) + JBll(W,t) (31)

Y21(Jw,t) : G21(m,t) + JB21(w,t) (32)

are the driving point and transfer admittance functions, respec-

tively, of the loaded 2-port at ports 1 and 2.
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Since, from the results of the previous section, Y21(J_,t) is

periodic in time with period T = 2n_- , it may be expanded in the
S

Fourier Series

Y21(J_,t ) : _ Y21(J_)eJk_st (33)

j%t
For every component, I e , of the current 12, there

n Jmnt

corresponds a component for the voltage V 2 of value Z(j_n)In e

on account of the linearity and time invariance of the impedance

Z(jw). Hence by superposition, for the current i2(t) given by

equation (30), we have the voltage across the impedance

CO

V2(t ) : Re{l Z(J°Jk)Y21k (jw)ejmkt}
(34)

where

mk= uu+ kw s

Let

Z(jw) = R(w) + jX(w) (35)

..... -21 _-'Y21J jw) = G2i(m] * _ kt'"_
(36)

and define

Rk = k)

X k = ×(_k )
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Then

v2(t) =
[ _[G21k C°s wkt - B21k Sin Wk t]

R_ -- CO

(37)

- (_B21k + XkG21k) Sin _kt

Also from equations (50), (33) and (56), we have

i2(t ) = _. G21 k Cos _k t - B21 k Sin wkt
k__-- ¢O

(38)

As for the 1-port considered earlier, the instantaneous power

absorbed at port 1 is

Pl(t) = vl(t) if(t)

= G!!(m,.t) Cos 2 mt- Bll(m,t) Sin wt Cos mt

and the average power is

<Pl(t)> = _i (Gll(m,t)> = i_ Re (jm,t) t (39)
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The power dissipated by the passive impedance is

P2(t) = v2(t) i2(t)

=II{ 21 G21
m n

m n

- XnB21 ) Cos Wmt Cos Wnt
n

- G21 (RnB21 + XnG21 ) Cos Wmt Sin Wnt
m n n

B21 _nG21 - XnB21 )Sin Wmt Cos Wnt
m n n

(4O)

+ B21 (RnB21 + XnG21 ) Sin Wmt Sin Wnt}
m n n

Hence

<P2(t)> _[G21
k

i.e.

+_ (_=_+_)
CO

1 + 21k

(41)

Finally, from the losslessness of the coupling SLC network,

we equate <Pl(t)) = (P2(t)) and obtain

(Gll(W,t) > : _ R(_)IY21k(JW) I
---_

(42)
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We note two special cases of equation (42). First, if the

terminating passive impedance is a pure resistance R independent

of frequency, the right-hand-side of the equation reduces to

2

R IY21k(J )l
---__

and since Y21(Jw,t) is at least piecewise continuous as a func-

tion of t

T
2 2

l<Z IY21k(JW) I = _ IY21 (jw't) I
dt

by Parseval's theorem.

Hence, finally, we have

2

<Re{Yll(JW,t)}> : R<IY21(Jw, t) I ) (43)

which for R = i_ is seen as a generalization of the relation,

2

Re{YII(JW) } : IY21(Jw)!

o__ its dual for_

2

Re{Zll(JW) } = IZ21(Jw) I

which are used in the Darlington synthesis of passive time-invariant

impedances by lossiess networks terminated by a unit resistance.
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Another special case is that where the passive impedance Z(jw) is

a reactance function. Then R(w) m 0 and equation (42) reduces

simply to equation (29) since now the whole system is a SLC network

as seen from port i.

We may also note the dual form of equation (42):

(Re Zll(JW, t)> : _ G(Wk) IZ21(Jw)l
k=-=o

(44)

Finally, by a similar procedure on the doubly terminated

network of Fig. 5-7 , we obtain the relation

2

(Re{Yll(JW,t)}> = _ RI(W k) IYllk(JW) l + R2(_.,,.)IY21k(JW)l

2

(45)

where the system functions are defined by the equations

z1(j ) = Rl( ) + j Xl(W)

Z2(Jw) = R2(w) + j X2(w)

I1 = Yll(JW, t)eJWt

4 r**'_"

12 = Y21(Jw, t)eJ-_

V1 = ejwt _

k

Jwkt

ZI(j Wk)Yllk (j w) e

k
Z2(jWk)Y21 k( jw) e
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The relations derived in this section are of theoretical

interest as extensions of classical frequency domain properties

of LC network functions. Since the system functions are not

rational in the variable p, the relations between driving point

and transfer immittances do not lead to a complete or partial

specification of either class of functions. Still, the results

are expected to be of further use in a complete treatment of the

synthesis of linear time-varying networks.



61.

3.3 Examples

In the previous section, we derived several relations among

system functions of linear, lossless time-varying networks under

passive time-invariant loads. The derivation was quite general

and the results are not limited to SLC networks alone but apply

to any lossless time-varying network for which the appropriate

system functions are defined. In this section, we shall utilize

several first order SLC networks to illustrate the validity of

the results.

Example i. For the circuit shown in Fig. 3-7(a),

I1 = 12 =

1 eJwt
, t E Ilk (switch closed)

0 , t 6 I2k (switch open)

From the defining relations

I1 = Yll(JW,t)eJmt

12 = Y21(Jm,t)eJmt ,

we obtain

Ii , t 6 Ilk

_)_ = "21(J_'t)=

L0 , t E I2k

We can thus verify directly that

(Re{Yll(JW,t)} > = i 2_-_ = R <IY21(Jm,t) l >

in accordance with equation (43).
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Example 2:

For the circuit shown in Fig. 3-7(b), we have

and

Hence

and

12 =

1 eJwt
, t E Ilk

1 eJWt
- [ , t 6 I2k

I1 =

1 eJWt
1 eJmt

1
Yll(JW,t) =

r,, I i
<ReVll(JW,t)J'> : _ •

t E Ilk

t 6 I2k

Also

and

Y21(Jw, t)

2
1

<IY21(Jw't) l > = 7

t 6 Ilk

t 6 I2k

Again the results agree with equation (43).

Example 3:

We next consider the circuit of Fig. 3-7(e).

identical symbols of Chapter 2, we have

Using the

A1 = A2 = 1 , B1 = 1 , B2 = -i
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Substituting these values in the summary of response equations

given in Section 2.4, we obtain expressions for the system functions

as follows:

YII(P, t)

{ r- l

] e-(P+l)(t-kT) [ZI-I j + i , tEIlk

I l-1 +1, t612k

Y21(P,t) =

e-(P+l)(t-kT) [Z i]i- + 1 ,tEIlk

e-(P+i)(t-kT-i/2 T) [-J[-ZI+I] _ i t612k

where ZI :

___e-T/2e-PT/2) 2

It is algebraically cumbersome to compute the expressions

for the quantities

2

<Re{Yll(J_,t)} > and (IY21(J_,t) l >

for arbitrary values of

equation (45) for the particular value,

Setting p = 0, we have

Yli(0't) = I

w. But we can verify the validity of

= 0.

1 + C e-(t-kT) , tEIlk

1 + C e-(t-kT-I/2 T)
, t612k
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and

where

Y21(0,t) =

i + C e-(t-kT)
, t 611k

-i - C e-(t-kT-I/2 T)
, t612k

By direct integration, we have

<_e{q_(o,t)}>=_ET+2c(1-e-T/2_

<IY21(0,t) 12> = _ +4C(l-e-T/2) + C2(l-e -T) .

Substituting the value of C, we verify directly that these two

expressions are identical.
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Chapter 4: FREQUENCY-POWER RELATIONS AND PRACTICAL CONSIDERATIONS

Frequency-power formulas [I] are consequences of the principle

of conservation of energy and the fact that two or more frequen-

cies can be specified independently for a system. In the context

of this thesis, we have frequency w associated with the signal

or power source and frequency w s associated with the switch.

Since the pioneering work of Manley and Rowe [2] on nonlinear

reactors with two independent frequencies, frequency-power equa-

tions and inequalities have been derived by several authors for

many systems, both electrical and nonelectrical. In general

[3-5]
treatments, the fomulas involve an arbitrary but finite

number of independent frequencies while the generated fPequencies,

for general forms of nonlinearities, are regarded as arbitrary

functions of the input frequencies. More specialized fores have

also been given for simple frequency structures and particular

forms of nonlinearities.[6-8] These formulas have been useful

in obtaining some fundamental bounds on the maximum theoretical

efficiency that can be achieved in frequency-conversion systems.

Since the ideal switch is a degenerate nonenergic element with

no single-valued V-I function defined, earlier methods of deriving

frequency-power formulas which involve energy functions are not

directly applicable. However, with the form of the solution and

properties of the system functions derived in Chapters 2 and 3

at hand, we may, following the technique used by later authors [9'I0]
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obtain useful frequency-power relations by direct computation of

the power associated with the voltage and current components at

various frequencies supplied externally or generated internally

by the network.

In Sections 4.1 and 4.2, several frequency power relations are

derived for the class of SLC networks. Also in Section 4.2 is a

discussion of the lack of strict fundamental constraints such as

Page's Law on the conversion efficiency of SLC networks. This is

illustrated by a simple circuit for harmonic generation. Section 4.5

deals with further practical aspects of SLC networks in comparison

with nonlinear resistive and reactive networks.
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4.1 Reactive Power Formulas

Consider the SLC network divided into multiport subnetworks

as shown in Fig. 4-1.

For an input function ejwt, the capacitor voltages are

Vc : Nc(jw,t)eJwt (i)

where the vector function Nc(Jm,t ) is periodic in time with

period T.

Hence

OD

Vc Z Nck(J w) eJ (m+kWs) t: (2)

where

ms = 2n/T is the switching frequency.

Since each capacitive element is linear and time-invariant,

the capacitor currents are given by

Ic _ J(_+k_s)C Nck(Jm)eJ(_+kws)t= (3)

k--'-- OO

where C = diagonal -A _ is _LU i] _,.- matrix of the capacitances.

Equations (2) and (3) simply state that if the component

of capacitor voltage at the frequency m + kw s is

j(_+kws)t

= ek(Vck N j_) e
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then the component of capacitor current at that frequency is

j(w+kWs)t

Ick = j(_+kWs)C Nck(JW)e

The simple form of the relation between V and I

ck ck

possible for time-varying or nonlinear capacitors.

is not

For example,

take the case where the capacitor charge is a nonlinear function

of the voltage. Then given the capacitor voltages, the currents

are

d dVc

Ic = C(Vc) 7[6-

where _ = fc(Vc) (4)

and
df

c
C(Vc) = d--9--

c

For this case, other indirect approaches have proved more

fruitful.

Returning to equations (2) and (3), we observe that the average

real power, Pk' and reactive power Qk' absorbed by the capacitors at

the frequency m + kw s are given by

Pk = Re {VtkI* }

Qk = Im_Vct I*}
k

i.e., Pk + JQk = Vtck I*ck : -j(w+kms)N_C N*ck (5)

where V t

Ck is the transpose of vector Vck and I*Ck is the complex

conjugate of vector I
%
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The Hermitian form NtkCu N* is non-negative for positiveck

capacitances. Hence, frequency-power formulas may be written as

Pk=0

----

(6a)

OD

Z
_+kw

k:- _ s

_< 0 (6b)

where equation (6a) is satisfied trivially with Pk m 0 for all k,

simply stating that no real power is dissipated or generated by

the capacitors at any of the frequencies w + kw s.

Similarly, for the inductive subnetworks, let the inductor

currents be given as

¢o

j _t _ j ( _kw s) t

I_ = N_(jw,t)e = /, N_k(JW)e (7)
k------- GO

Then the inductor voltages are

V_ _ j (_+kWs)L (jw)e j (w+kws)t: (s)
N_ k

where

L = diagonal [L i}

is the positive definite matrix of inductances.
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The average real and reactive powers absorbed by the

inductors at the frequency w + kw are
s

t = j (m+kWs)N_ L
(9)

We then obtain frequency-power formulas

I Pk = 0

k

(lOa)

w+k_

k s

>i0 (10b)

Following the convention that reactive power absorbed by

a capacitor is negative and reactive power absorbed by an induc-

tor is positive, we note that equation (6) reduces to (i0). But

if by design, we have the following equation valid,

14/, ck ck
k k

: o (ll)

then frequency-power formulas may be written for the whole

network as

I Pk=O

k

Qk

I m+kWs - 0
k

(12a)

(12b)
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where equation (12a) may be regarded simply as a statement of the

principle of conservation of energy. Similarly, equation (12a),

and hence equation (ii), would indicate equal rates of absorption

and generation of reactive power in the inductors and capacitors_

respectively.

As noted by previous authors_ the equations involving reactive

powers do not lend themselves easily to physical interpretations,

especially about the efficiency of real power-frequency conversion,

which is of prime concern. Hence, in the next section, we shall

take an external view of the SLC network to obtain non-trivial

formulas involving the real power components.
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4.2 Real Power Formulas

We now consider the SLC network with frequency selective

terminations as shown in Fig. 4-2. Fig. 4-2(a) shows the more prac-

tical 4-terminal circuit with the SLC network coupling the source to

the load. In Fig. 4-2(b), we have placed the source in parallel

with the load, thus obtaining a 3-terminal circuit, and picture the

SLC network as a 1-port in analogy with previous works on single

nonlinear reactive or resistive elements.

As before, the current flowing out of the SLC network may be

...... • ._.LL %,/.L_: -/-U-[-'m

I(jw,t) = y(jw,t)e jwt (13)

where y(j_,t) is a transfer admittance function and is periodic

in time with period T. Hence we can expand I(jw,t) in the form

j(_+kms) tI = yk (j w) e (14)

We may assume to start with that the tuning of each RLC series

circuit is ideal so that each resistor dissipates power only at the

center-tuned frequency. Then we have

V-

I =L ik(t)

k

j(w+kw s)t

where ik = yk(Jm)e (15)

Then vk = rki k
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and hence the average real and reactive powers absorbed by the load

at the frequency w + kw s are given by

* 12
Pk + JQk = Vkik = rk lYk (jw) (16)

From the conservation of energy and the losslessness of the SLC

network, we have the relation

CO

k:l k=l

where Pk : Re{Vkik} : rk lYk(JW) 12 (18)

For a passive load, rk _ 0 .

Hence, Pk $ 0 and we have

-Pc + _7 k2Pk > 0

k

(19)

In order to obtain information on conversion efficiencies using

frequency-power formulas, it is commonly assumed that the form of the

formulas is essentially unchanged when power is absorbed or supplied

_t only a finite number of frequencies. In particular when power is

w + k_ ssupplied at frequency w and absorbed at only one frequency

equation (19) implies that

-Pc + k2Pk = 4 (20)

for some non-zero real number _.
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Equation (20) gives a conversion efficiency

Pk I h_

0

i.e., > llk 2

provided the trivial condition

(21)

(22)

= -0
Pk Po (23)

does not exist. As discussed in the next section, this result

contrasts with PageTs inverse square law of harmonic generation

using positive nonlinear resistive elements which gives

_ 1/k 2 (24)

To illustrate the contrast between SLC networks and ideal diode

networks in the capability of the former to bypass Page's inverse

square law, we consider the harmonic generator circuits shown in

Fig. 4-3. In the steady state, with the appropriate phase relation

between the source waveform and the operation of the douple pole-

double throw switch, the voltage v(t) is a full-wave rectified

sine wave as given in Fig. 4-4(a). In contrast to the behavior of

the diode bridge circuit shown in Fig. 4-3(b) [Page' 9], the current

through the series RLC circuit of the SLC harmonic generator is inde-

pendent of the charge on the capacitor so that in the steady state,

it has a typical form as shown in Fig. 4-4(b). This may be demon-

strated as follows:
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The coefficients of state equations for the SLC harmonic

generator, shown without the transformer in Fig. 4-5 are related

in the manner

Hence

and the matrices

A1 = A 2 = A ; B1 = -B 2 •

E1 = E2 = A-pI = E

%_ and vectors Gi
are also related by:

2

ql = q2 ' q = o,_

= -G1

Then, we also have

G = Q2GI + G 2 = (Q2-I)G 1

= -(I-QI)Gi

Z1 = (I-Q)-IG :-(I-QI2)-I(I-QI)GI

= -(I+q!)-iG!

Similarly:

z2 = Qizl+ Gi = -Qi(I+ql)-!Gi+ Gi

= [_Ql(i+Qi)'i+ I]Gi

= (i+ql)-i (-Q1+I+ql)Gi= (I+ql)-iGi
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Hence Z2 = -Z1 .

The steady-state solution is given by

X(t)e -pt _ eE(t_kT_T/2)[_ZI_E.IBI ] + E-IBI , tEI2k

Now writing out the coefficients of the state-space equations

explicitly, with

r" "I

we have

A ---

o l/C]
-I/L -R/LJ

Hence

where

and

= 82D(p) (p+ _)2 +

R 82 1 2
e=_-f ' =L-U-
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Also, by Laplace transform inversion of (pI-A) -I, we have

At -_c
e -- e

m

Cos _t + _ Sin 8t

-IISL Sin 8t
m

1
Sin 8t

Cos 8t -_ Sin 8t

Then other quantities in the steady-state solution are obtained

as follows:

Q1 = eET/2 = e-PT/2 eAT/2

= (-i) k e-(p+_)T/2 I

2nk
for 8 = -9-- '

is desired.

k a positive integer since harmonic generation

Also, G1 = (I-QI)(pI-A)-IB 1

[i- (-l)ke -(p+_)T/2]

D(p)
1/LC

p/L J

and Z1 : -(I+QI)-IGI

-[i- (-l)ke -(p+_)T/2]

D(p) [I + (-l)ke -'(p+_)T/2]

I/LC]

p/L J
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Hence

Z1 + E-IBI = -2

D(p)rlL. + (-l)ke-(P+_)T/2]

We then obtain the following exact expression for the steady-

state current response during either time interval to the input ept.

i(t) =
-2e-_- IL_ Cos 8t-(_L + _L--_C) Sin _t]
(_l)ke- (P+_)T/2]

+ P ept .
L "D(p)

Assuming that the tuning factor of the load may be arbitrarily

increased so that power is dissipated only at the center frequency

kWs, we have

- 0 so that e-_T/2 _ 1 - oE/2 and 82 - I/LC

Then for a real sinusoidal input voltage of amplitude NA and

frequency Ws, the current through the series resistance is approxi-

mately sinusoidal, with frequency 8 and amplitude

{4NA_ / k )

for k even.

The power supplied to the load at the harmonic frequency kw s is

Pk
I k2N2A2 k even

2R(k2_l)2 '

0 , k odd



86.

By selecting a transformer ratio

we have

N = n(k2-1)
4k

A2

Po = Pk = 2-R

Thus the circuit of Fig. 4-4(a) is ideally capable of converting

all available power at frequency w to power at any even order

harmonic frequency kw with I00 per cent efficiency.

It ,_nayb= noted that the expression for Pk may be obtained

by Fourier analysis on the full-wave rectified voltage waveform

IVk 12

Pk-
2R

However, such an analysis does not illustrate the absence of the

trivial condition, P _ 0.[e.g., see ii]
o

Also, an analysis similar to the above may be carried out with

a tuned idle circuit in place of the ideal transformer, with the

ratio of the center frequency of the idle circuit to the switching

frequency, r = wi/w s as the design parameter in place of the trans-

former ratio N.

and setting
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4.5 Comparison of SLC Networks and Nonlinear Frequency. Conversion Systems

Before discussing other practical aspects, we briefly

review some results derived from the frequency-power formulas for

nonlinear resistors and nonlinear reactors by previous workers.

The frequency-power formulas for positive nonlinear resistors

with independent frequencies wI and w2, and generated frequencies

mw I + nw 2 are given by [Pantell, 3]:

oo

TTm2P >
_ mR

m=O n=- =o

0 (24a)

@o co

Z Zn2Pmn__>
m=- 0o n=O

0 (24b)

The relations for nonlinear reactors under similar conditions

are [Manley and Rowe, 2]:

oo

Z Z m PmR
mwl+nm 2

m=O n=-_

- 0 (25a)

TynP 
--- mWi+n,,#2

m=-= n=0

- 0 (25b)

where P is the average real power absorbed by the nonlinear
mn

element at the frequency mw I + nw2.. It should be noted that the

sign convention for positive power in this section is the reverse of

that used in the previous section, where a positive sign is associ-

ated with real power Pk(k _ i) generated by an SLC network.
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We consider two specific power/frequency conversion problems:

harmonic generation and amplitude modulation.

Harmonic Generation: Suppose the nonlinear element is driven by

only one source at frequency w so that the generated frequencies

are nw. Equations (24) and (25) then reduce to the single equa-

tions, respectively:

Z n2Pn _ 0 (26)

n

v"
Pn = 0 (27)

n

where P is the average real power absorbed by the nonlinear
n

element at frequency n_.

If power is absorbed at only one frequency n_, then equa-

th
tion (26) predicts that the efficiency of generation of the n

harmonic,

cannot exceed I/n 2.

With nonlinear reactors, from equation (27), the maximum

efficiency is theoretically i00 per cent, independent of the

order of the harmonic.

Amplitude Modulation. Suppose the nonlinear element is driven by

two sources at frequencies Wl and w2 but power is absorbed at

the output only at frequency mw I + nw 2. Equation (24) then

reduces to
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> 0PI0 + m2Pmn -

> 0P01 + n2Pmn -

The conversion efficiency is then

: I--P°ut= IP=I < ,-
Pin IP01+PI0 I m +n

Under the same conditions, equation (25) reduces to

p rn D
-I0 ....mn
-- +
mI mwl+nm 2

=0

P01 n Pmn
-- +

w2 mwl+nm 2
=0

Hence _ : I P°ut I IPmnl

Pin IPoI+PIo I

Thus, for nonlinear reactors, the maximum conversion efficiency

is i00 per cent, independent of m and n, whereas for nonlinear

resistors, even with m = n = i, i.e., for first upper sideband

modulation, the maximum conversion efficiency is 50 per cent.

For SLC networks, there is no fundamental limitation on the

efficiency of frequency conversion. Particularly, the discussion

contained in the previous section implies that SLC networks are not

constrained by Page's inverse square law. However, the expectation

of i00 per cent efficiency in frequency conversion is not based on
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the condition of lossless coupling alone. As Page[9] has emphasized,

the ideal diode with the voltage-current relation

i

vi=O , v_O , i_O

V

th
is lossless, but its efficiency for generation of the m harmonic

cannot exceed i/m 2, no matter the ingenuity of the circuit con-

figuration or filter design.

Simi!e-]y: for another common switching device, the single sili-

con controlled rectifier (SCR), the efficiency of generating the mth

hamonic is proportional to i/m2; for, with a firing angle _ <

and anode commutation taking place whenever the anode current

th
attempts to reverse polarity, the m harmonic power is proportional

to the square of the mth Fourier coefficient of the output voltage

waveform, and this is also an upper bound on the efficiency;

2 b2 Ii.e., _ = I an + n

where

1 En Cos n_Cos _+ Sin n _ Sin _+ n(_l)n ]
an = _(n2_l)

Hence

b
n

1 F c4. R_n _ COS _l

= _(n2_l)- Ln Cos n_ _,, _ - __. n_ J

1 En2+l + (n2-1)Cos2n_ + (-l)nn(n-l) Cos (n+l)_2 2
(n2-1)

+ (-l)nn(n+l) Cos (n-l)_1
J
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This result reflects the intermediate nature of the SCR

between the ideal diode and the ideal switch.

Thus the high values of efficiency which can be obtained when

silicon controlled rectifiers are used in applications such as

de-de converters and dc-ae inverters cannot be realized in ae-ae

converters directly.

From the discussion in this and the previous section, we note,

in summary_ the characteristics which enable the ideal switch to

bypass Page's Law as follows:

(i) the fundamental characteristic is the ability to

switch ON and OFF at arbitrary instants independent

of the instantaneous amplitudes and phases of the

voltages and currents in the circuit;

(2) a second property_ which is necessary for the

operation of the circuit shown in Fig. 4-5(a) but

is not fundamental, is the bidirectional capability_

i.e., when OFF, it blocks both positive and negative

currents and when ON, it conducts current in either

direction depending upon the state of the rest of the

circuit.

The main advantage of SLC networks over nonlinear reactive

elements capable of operating at comparable power and frequency

levels, such as saturable core reactors is in the potential com-

pactness of the former, as with all solid-state technology. The

disadvantage, at the current state of the art, is that the ideal

switch is not available as an integral unit, but can only be
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simulated by the connection of two power transistors or gate-turn

off switches in inverse parallel as shown in Fig. 4-6.

The rectifiers R1 and R 2 are for protection of the active

devices for possible extension of the operating power levels.

Even though the ideal switch is not currently available as a

single unit_ its stipulation is in step with the trend in solid-

state device integration and design as represented by the advances

from the basic SCR units to triacs and gate-turn off switches in

the last decade. [See Appendix for brief description of these

devices.]
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5.1

Chapter 5: MODELLING OF LINEAR TIME VARYING SYSTEMS

Introduction

The problem of synthesis and modelling of linear time-vary-

ing networks and systems has received a great deal of attention

in recent years.J1'2] One commonly used approach is to obtain a

system described by a set of state equations of the form

{ = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(i)

for which a given matrix H(t,T) is the impulse response matrix.

The state equations (i) may then be used in an analog simulation

of the given network or system.

The other approach is to realize input-output specifications

by using networks of a restricted class of elements connected in

a specific manner, as in classical network synthesis. Meadows

et alia [5] utilize a canonical n-path network with analog signal

generators and multipliers, constituting amplifiers with time-

varying gains, as the only time-varying elements. Spaulding and

others [4'5] utilize time-varying multiport gyrators and trans-

formers terminated in unit fixed elements.

In practice the analog waveforms required in the n-path

realization are complicated and difficult to generate, while

realizations of a single time-varying gyrator or transformer

requires many active elements and much design effort.[6]
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On the other hand, only a small number of devices are required for

realization of an ideal switch, and the waveforms required for switch-

ing are digital and hence more easily generated. Thus, we can expect

some practical advantages in modelling linear time-varying systems

using only ideal switches as the time-varying elements.

In this chapter, we consider specifically the problem of real-

izing a given function Y(p,t) as the driving point admittance

function of a periodically time-varying, lossless network. The

admittance function is defined by the relation

I(p,t) : Y(p,t)e pt (2)

where I(p,t) is the current flowing into the network at the input

port and e pt is the driving point voltage waveform, as shown in

Fig. 3-4. As discussed in Chapter 3, Y(p,t) is periodic in time

with period T equal to the period of the time variation of the

network. When Y(p,t) is not specified directly, it may be derived

from the impulse response by the integral transform

oo

Y(p,t) = J_oH(t,t-{)e -p{ d@

e_P(t_T):H(t,T) dT

--oo

(3)

where H(t,T) is the current into the network at the input port

for a voltage impulse applied at time t = T.
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Two other necessary conditions that must be satisfied by the

driving point admittance function, Y(p,t), of a lossless network

are :

I. the pole locations are time-invariant and all lie on

the imaginary axis:

where

Pki = J(mi+kms )' i = i, ...n ; k = 0, + i, ...

= 2u/T
S

2. the time-average of the real part of

(4)

Y(jw,t) is zero:

iy(<Re jw, t)l_ : u ,_,
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5.2 Approximation and Design of Driving Point Functions

In this section, we consider the problem of designing a

given driving point function of a periodically time-varying

lossless network by means of SLC networks. As is well-known,

any passive driving point function may be realized by termi-

nating a certain derived lossless network by a unit resistor,

so that the realization of lossless networks is basic to the

whole network realization problem.

Suppose we are given a system in the form (i), with co-

efficients A(t), B(t), C(t) all periodic in time with a common

period T. A step that naturally presents itself is to approxi-

mate all the time-varying coefficients with a finite number of

piecewise constant matrices over a period kT _ t $ (k+l)T.

For example, A(t) may be replaced, over a period, by

n

A(t> A<ti>[u<t-ti>- u<t-ti+l>]
i=l

(6)

and similarly for B(t) and C(t), with the set [ti} chosen in

an appropriate manner.

Let

AI.= A(ti) , T.l = ti+l - t.1

where n

. =T .T I

i=l
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Divide the time interval kT .< t _< (k+l)T into

intervals

n sub-

Iik " kT + Ti_ 1 _< t $ kT + T i , i = i,... n.

Then the state-space equations can be written approximately

in the form

x(t) = Aix(t ) + Biu(t)]

y(t) Cix(t ) _i t6Iik'

i = 1,2,...n (7)

Considering the describing differential equations alone,

work of Fig. 5-1, and if each path is an SLC network, then

the whole system is lossless. However, the network is not

appropriate for design of input-output system functions because

of the difficulties of taking account of boundary conditions at

transitions from one path to the other and keeping the poles of

the steady-state system functions time-invariant at pre-assigned

locations. To find modifications needed to overcome these diffi-

culties, let us consider in detail the 2-path case. The normal

form equations may be written as

x I = AllX 1 + BlU(t)

x2 A21x2

Y CIX 1

t6Ilk (8)
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and xI = AI2X 1

x2 = A22x2 + B2u(t)

y = C2x 2

> tEI2k (9)

As in Chapter 2, let u(t) = ept ,

and Z. = x.e pt
1 1

E.. = A.. - pI ,
13 13

(10)

we then have the transformed equations

Z1 = EIIZI + Bl_t6ilk
_2 : E21Z2

(ii)

and

Z1 = EI2Z 1 _tEi2k
Z2 = E22Z2 + B 2

(12)

The solutions of these equations are

Ell(t-kT)

Zl(t ) = e Zl(kT) + . - EIIB 1

E21(t-kT)

Z2(t ) = e Z2(kT)

(13)
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and
EI2(t-kT-T I)

Zl(t) = e ZI(kT+TI)

E22(t-kT-T I)

Z2(t) = e Z2(kT+TI) +

L
j t 612k[e E22(t-kT-TI) -I] E2:B 2 (14)

The continuity of Zl(t) and Z2(t ) at the switching instants

provide, in the steady state, the solutions

= G1 (iSa)

Zlss(kT+T I) = QllZlss(kT) + GII (zsb)

,-I

Z2ss(kT)-(I-Q2)G2 (ibc)

Z2ss(kT+T I) = Q21Z2ss(kT) (iSd)

where the Q and G matrices are defined as follows

EIIT I EI2T 2

%1 = e ' QI2 = e ' Q1 = %1Q12

E21T 1 E22T 2

Q21 = e ' Q22 = e ' Q2 = Q21Q22

R T -i

= (e-II-GII l-I) EIIBI

-i

G22 = (eE22T2-I)E22B 2

G1 = QI2GII

G2 = Q21G22

(16)

J
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The desired steady-state system function is then given by

=_ CIZI(P,t) , tEIlk
H(p,t)

C2Z2(P,t) tEI2k

(17)

We observe that for the poles of H(p,t) not to have residue func-

tions that are zero over a finite time interval, we must have

the relations

det [I-QI]= det [I-Q2] = 0 (18a)

det FE_7 = det FEoo7 = 0 (18b)
L "J-_l L __I

satisfied at the same values of p.

A basic structure for which equation (22) holds is the

2-path, 2nd order network shown in Fig. 5-2, where

All = AI2 = , B1 =

/c 1 0

(19 a)

and

F0

A21 = A22 = EZ/C 1 ],,=[j0 0

(19 b)

LIC I = L2C 2 (20)
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For this case,

X. ""

1 EliL.
I

VC.
l

i=l, 2

Hence the input current is

ILI

IL 2

t 6 Ilk

t 6 I2k

Since iL. = Ctx i
i

function is

' f°r C =I 1 _'0 the driving point admittance

Y(p,t) =

CtZl(P,t) , t 6 Ilk
ctz2(P,t) , t E I2k

(21)

This network realizes one of the frequencies [wi] denoted in

equation (4), so that to realize all n basic pole locations,

n basic 2nd order-two-path structures may be connected in parallel,

as in Fig. 5-3. Note that in Fig. 5-3, we have included a series

connection of the capacitor voltages by means of a multi-winding

transformer. This connection does not affect the driving point

characteristics, but indicates a logical step in the extension of

the procedure to 2-port system function realizations.

From the expressions for Zl(P,t) and Z2(P,t ) in (15) and (14),

we observe that the variation of the residue function during the time

intervals Ilk and I2k is determined by the location of the pole.

Thus, even though the residue function is periodic in time with the
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SLC NETWORKS TO REALIZE Yll(P,t)
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required period of the time variation of the network (equal to the

period of operation of the switches), it is not possible to realize

exactly the continuous time variation of the residue function. This

limitation is due to the discontinuous nature of the switch. How-

ever, to approximate an arbitrary residue function within acceptable

tolerances, several design parameters are available:

(i) The amplitude of oscillation of the residue functions in

either time interval Ilk, I2k may be arbitrarily changed by chang-
L.

ing _. while keeping the products L.C. constant.the Patios

i Ii

(2) Either the duty cycle of the operation of the switches may

be changed or the number of paths of basic 2nd order networks may be

arbitrarily increased if necessary.

However, we shall not carry this consideration further, but

instead, we shall give an example to illustrate the explicit form

of the residue function.

Example: Realize a driving point admittance function with

poles located at the points

Pk = j(1 + k/2) , k = O, _ 1, _ 2,...

Hence wI = 1 , w s = 1/2 , T = 4_ .

We select the -'-_.... T
va_u_o _i : L2 = !h_ C I : C 2 : if. and TI/T = 1/2.

Then the admittance function is given explicity by:

Y(p,t) =

Yl(P,t-kT) , kT < t < kT + T/2

Y2(P,t-kT-i/2 T) , kT + T/2 < t < (k+l)T
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where

yl(P,t ) = -(l-e-2nP)e-Pt(p Cos t- Sin t) p

(p2+l )(l-e -4_p i + --P2+I

y2(P,t ) = -(i -2e-4Trp + e-6nP)e-Pt_p Cos t - Sin t) P

(p2+i)(i_e-_p) +
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CHAPTER6: CONCLHSION

6.1 Summary of Results

In this thesis, we have carried out a study of a class of

periodically time-varying lossless networks. These networks are

made up of ideal capacitors, inductors and switches. The loss-

less condition isachieved by identifying potentially lossy situ-

ations and limiting the class of networks to exclude those cases

where loss might occur when the switches are operated periodically.

A complete state-space solution is given for a canonical subclass

characterized by possession of a minimal number of reactive elements,

a proper tree, and a state-vector which completely describes the net-

work during both time intervals of constant state coefficients. An

i extension of the analysis is outlined for the case where the state

vectors are not identical in the two time intervals, but are related

by a constant nonsingular transformation.

Steady-state time-varying system functions are defined in a

manner analogous to the treatment of time-invariant LC networks

without imposing the condition of asymptotic stability. This is

done by the choice of a particular set of initial conditions for

which no aperiodic transient is launched. The system function

vector N(p,t) thus derived has properties consistent with the

system functions of lumped periodically time-varying networks. It

is periodic in time with period equal to that of the time variation

of the elements of the network, in this particular case equal to the
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period of operation of the switches. Its pole locations are time-

invariant and lie on the imaginary axis of the p-plane. For one-

port networks, the imposition of the lossless condition gives the

result that the time-average of the real parts of the driving point

immittance functions are zero. For two-port networks with a passive

time-invariant load, the lossless conditions leads to a relation

between driving point and transfer immittances. For example, when

the load is a one-ohm resistance, the time-average of the real part

of the driving point admittance Yll(Jw,t) is equal to the time-average

of the square of the magnitude of the transfer admittance Y21(Jw,t).

These relations are observed to be extensions of familiar frequency

domain properties of LC network driving point and transfer immittance

functions.

Various frequency-power relations are derived for the class

of networks. The relations involving reactive powers are mostly

of theoretical interest only, indicating the fact that frequency

conversion occurs only in the switches and not in the linear reac-

tive elements. The relations involving real power indicate the

absence of a fundamental upper bound on the efficiency of conver-

sion. This contrasts with Page's inverse square law of harmonic

generation using positive nonlinear resistors. However, since

nonlinear reactors are also theoretically capable of i00 per cent

efficiency in frequency conversion, the only advantage of the ideal

switch over currently available elements such as saturable core

reactors is likely to be the potential compactness of the ideal

switch, at comparable power levels and frequency ranges. To
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realize this advantage, a solid state circuit for simulating the

ideal switch is suggested, consisting of two gate-turn off switches

connected in parallel and opposite direction of conduction.

Finally, the problem of realizing the system functions of

linear time-varying networks using only ideal switches as time-

varying elements is considered briefly. For the fundamental case

of the driving point admittance function of a lossless, periodi-

cally time-varying one-port network, a suitable network consisting

of sequentially commutated 2-path, 2nd order networks is selected

and analyzed. This analysis shows that the poles of a given ad-

mittance function can be realized exactly, but the residue function,

while appropriately periodic in time with the period of the switch,

cannot be realized exactly in general. Parameters available for

piecewise design of the residue function are the ratios of induc-

tance values to capacitance values for each path, the duty cycle

of the commutation and the number of paths to be used for each

basic pole location.
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6.2 Suggestions for Further Research

The results of this study may be classified into two groups as

follows. The first group consists of the mathematical characteriza-

tion of SLC networks and their circuit theoretical properties as a

class of linear time-varying networks. The other group is concerned

with the consequences of postulating the ideal switching element in

the theory of electrical power conversion. Both types of results

are necessary steps towards the broad goal of synthesizing time-

varying circuits for electrical power processing (similar to the

synthesis of communication networks), and the possibility of real-

izing these circuits using SLC networks. For example, in the cir-

cuit shown in Fig. 6-1, we have an available source of power, the

voltage source ej_c ejl0wt, and a voltage k is desired across a

resistive load of one ohm.

The currents at ports 1 and 2 are

Hence

Also

I 1 = Yll(JW,t)eJwt

12 = Y21(Jw,t)eJWt = k e10jwt

Y21(Jw,t) = k e j9wt

(Re[Yll(JW,t)]> : (IY21(Jw,t) 12> = k 2
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A possible selection of Yll(JW, t) may be

Yll(JW, t) = k2e j9mt + k 2

= k2 [I + ej9wt]

Then the power processing problem is reduced to that of syn-

thesizing a lossless time-varying 2-port network which has the speci-

fied input and transfer admittance functions when terminated at

port 2 with a resistive load of one ohm.

A complete solution of this problem requires further work on

the realization and synthesis of time-varying 2-port networks, par-

ticularly lossless networks, for which the contents of Chapter 5 may

serve as a starting point. Also, further work on the mathematical

characterization of general power processing circuits in terms of

time-varying system functions will complement the synthesis effort

in the achievement of the desired goal.
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APPENDIX

SOLID-STATE CONTROLLED SWITCHING DEVICES [I-3]

The purpose of this appendix is to discuss briefly the

characteristics and parameters of some currently available solid-

state controlled switching devices so as to place in perspective

the properties of the ideal switch stipulated in the body of the

thesis. The devices we shall consider specifically are the

common two-junction, three layer transistor, the three-junction,

four-layer silicon controlled rectifier (SCR) and two outgrowths

of the SCR, the triode ac switch (triac) and the gate turn-off

switch (GTO). These devices will be compared with respect to the

following switching parameters:

(i) The maximum forward and reverse voltages that the

device can block in its OFF state without avalanche

break-down and conduction.

(2) The forward current rating and the forward voltage

drop at rated forward current.

(5) The ratios of anode-cathode power to the gate turn-on

power, and the gate turn-off power when this is appli-

cable. [Often the switching sensitivity parameter is

specified in terms of current ratios only.]

(4) The turn-on and turn-off times (switching speed).

The significance of some of these parameters are apparent;

others require a brief explanation. The maximum forward and
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reverse blocking voltages limit the voltage level inthe circuit

in which a particular switching device may be utilized. Since

devices are available for which these parameters may vary from

hundreds of volts to IKV or more, it might appear at first that

they are not strong constraints on device selection. However,

this is only partially true because in general, all the switching

parameters are physically interrelated in such a way that improve-

ment in one leads to degradation in one or more of the others. A

good example of such a relation is that between the rated forward

current and the turn-off time: the higher the forward current

rating, the longer the turn-off time due to the finite rate of

recovery and charge transfer in the various layers of the devices.

The switching speed of a device, specified as the turn-on and

turn-off times, limit the frequency ranges over which circuits

using the device can operate. In the ideal switch, we postulated

instantaneous change of state so that both the turn-on and turn-off

times are zero. In the practical cases where these quantities have

non-zero values, the maximum frequency of operation must be limited

to values much less than i/(tON + tOFF) Hz where tON and tOF F are

the turn-on and turn-off times, in seconds.

The forward voltage drop at rated forward current is a measure

of uhe power loss in the switch in its ........ ,_^_ _ _A_

switch this is assumed to be zero); this limits the efficiency of

power processing circuits. Another source of loss and efficiency

limitation lis the power required at the control gate to turn on
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the device from its blocking state and to turn it off from the

conducting state when gate turn-off is possible. Hence a large

value for the ratio of the power in the main anode-cathode channel

to control gate power is desirable such that the gate power is

negligible compared to the anode power as for the ideal switch.

Turning to actual devices, we note that the common transistor

possesses the fundamental property of the ideal switch, i.e., it

can be turned ON and OFF by the application of positive and nega-

tive control signals at the base-emitter terminals (given polarity

of control signals are those for an n-p-n transistor and are reversed

for a p-n-p transistor). The transistor is limited by its relatively

low blocking voltages (less than several hundred volts), low switch-

ing sensitivity and long switching times, especially at higher

power levels. Also, base current is required during the entire

period of time when the transistor is in the ON state because it

has no latching action. This further increases the gate power

dissipation of the transistor switch. Typical switching parameters

for power transistors are: blocking voltage of 100 volts; gate

current sensitivity of 10 at rated collector current of 5 amps.

and switching times in hundreds of microseconds, most of which is

turn-off time.

power switch, especially in the direction of higher blocking volt-

ages, several four-layer p-n-p-n devices have been constructed. The

most common of these for power applications is the silicon controlled
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rectifier (SCR) whose structure, symbol and typical V-I character-

istics are shown in Fig. A-I. The higher blocking voltages (up to

IKV or more) are due to the additional, wider n-region, while the

latching action which keeps the device conducting without the

necessity of a continuous gate signal permits the use of pulsed

control so that gate dissipation is reduced considerably. Thus

the average turn-on current gain may be of the order of several

thousands. The SCR also has fast switching speed with turn-on

times of the order of one microsecond and turn-off times of tens

of microseconds. Its main disadvantage is that once conducting,

it cannot be turned off from the gate circuit, but only by a

commutating action in the anode-cathode circuit that reduces the

anode current to below the holding level.

Two outgrowths of the p-n-p-n device principle are the triac

and the gate turn-off switch (GT0). The triac consists essentially

of two SCR's connected in inverse parallel ("back-to-back") so that

it can conduct in both directions of current flow in response to a

positive or negative gate signal. Its operation and switching

parameters are similar to those of the single SCR, except that it

must be turned off only during the brief period while the load

current is passing through zero; this limits the frequency of

operation to less than 100 Hz for presently available triacs.

The GTO is another p-n-p-n device similar to the SCR, except

its construction is such that it can be turned off by the appli-

cation of a 'negative gate current. However, the turn-off current
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gain is quite low (of the order of i0) and GTO's are forced to

operate at much lower current densities than SCR's and so are

less economical. Currently available silicon power transistors

tend to perform better than the GTO in many applications so that

the latter has not received much attention in recent years.
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